What is DLC coating and its properties?
Diamond-Like Carbon (DLC) coating is a single layer of hard carbon, deposited using highly specialised coating methods. DLC coatings are used to modify the surfaces of materials and improve the tribological and other properties. DLC coatings have many advantages because of their low cost and their abilities to provide diamond-like properties to different surfaces. The carbon layers are mainly used to improve the wear properties of components due to the diamond-like hardness, low friction, and high resistance to wear and corrosion. These properties, as well as the achievable high electrical resistivity, infrared-transparency, high refractive index and excellent smoothness of the DLC coating can match well with the criteria of a good biomaterial for biomedical applications such as in orthopaedics, cardiovascular, contact lenses, and dentistry.

In addition, they can exhibit sufficient, low absorption and scattering to deliver good BBAR (Broadband Anti-reflective) performance on both silicon and germanium.

However, DLC must be used with caution on ferrous metals despite its favourable tribological properties. The substrate may carbonise if it is used at higher temperatures, which lead to loss of function due to a change in hardness.

Important to control the DLC coating thickness
The carbon layer requires a specific thickness to achieve the desired surface properties, for instance DLC coatings are often optimised for a specific wavelength region by adjusting the layer thickness during the coating process to deliver good BBAR (Broadband Anti-reflective) performance. Precise control of the DLC film thickness is important for optimising the coatings for both R&D and industrial purposes.

Measurement techniques
Various approaches have been employed to measure film thickness. These include conventional methods such as spectrophotometry, ellipsometry and physical step measurement in addition newer techniques such as Coherence Scanning Interferometry are becoming more common. Other methods have also been used to investigate coating thickness, such as wavelength interferometry, prism couplers and thermal wave detection with a laser beam.

Non-contact Coherence Correlation Interferometry (CCI) instrument is an advanced coherence scanning interferometer which provides fast and accurate high-resolution 3D surface measurements and film thickness measurements.
Industrial applications for Diamond-Like Carbon coating

Automobile industry
DLC is widely used in the automobile industry such as in bearings, cams, cam followers and cam shafts to reduce wear and the need for lubrication.

Extreme contact pressure
Excellent tribological properties make DLC coatings suitable for use in applications that experience extreme contact pressure, both in rolling and sliding contact. For example, DLC is often used to prevent wear on metal cutting tools and razor blades.

Optical coating
DLC may be the strongest optical coating in the world and offers excellent resistance to abrasion, salts, acids, alkalis, and oil. Military vehicles and outdoor thermal cameras often employ DLC coatings to protect the outer optical surfaces from high velocity airborne particles, seawater, oils and high humidity.

Space vehicles
DLC can also be used to prevent wear during launch, orbit, and re-entry of land-launched space vehicles because it can provide lubricity both at ambient atmosphere and in vacuum.

Biomedical applications
DLC is a good choice for biomedical applications such as in orthopaedics, cardiovascular, contact lenses, and dentistry.

Bearsings

Cam and cam followers

Outdoor thermal cameras

Military vehicles

Razor blades

Lathe inserts

Cutting tools

Land-launched space vehicles

Biomedical
A schematic of a scanning interferometer system is shown in Figure 2. Light from the light source is directed towards the objective lens by the upper beam splitter and the light is then split into two separate beams by the lower beam splitter. One beam is directed towards the sample and the other is directed towards an internal reference mirror. The two beams recombine and are sent to the detector. As the interferometric objective is scanned in the z direction, interference occurs when the path lengths of the two beams are the same. The detector measures the intensity, taking a series of snapshots as the sample is measured. This creates an intensity map of the light being reflected from the surface, which is then used to create a 3D image of the surface being measured. Different techniques are used to control the movement of the interferometer and also to calculate the surface parameters. The accuracy and repeatability of the scanning white-light measurement are dependent on the control of the scanning mechanism and the calculation of the surface properties from the interference data.

Coherence Correlation Interferometry (CCI) is becoming increasingly important for measurements in many applications, providing:

- Fully automatic non-destructive measurements
- Accurate and quantitative characterization of surfaces
- Sub-angstrom resolution regardless of the scanning range used
- Fast and convenient sample loading and set-up
- Capability of measuring a wide range of materials
- Highly repeatable measurements
- Roughness and step-height analysis in one measurement
- Film thickness and interfacial surface measurement capability

The wide variety of industrial applications mean that Coherence Correlation Interferometry is increasingly important.

Dr Mike Conroy, Business Development Manager, Taylor Hobson Ltd.
Measurement of film thickness

An important extension of interferometry is the ability to measure film thickness. When the interference signals appear at the surfaces of films a special algorithm is used so that the film thickness can be extracted from the interferogram. In some cases the surface information can also be obtained.

The advanced CCI HD has 4 million camera pixels and each individual pixel will act like its own 1 µm optical probe enabling high speed measurement of multiple film thicknesses with an independent thickness measurement at each point (Figures 3 and 4).

The combination of Film Thickness software and Coherence Correlation Interferometry (CCI) gives unrivalled thin film measurement capability.

Traditional thick film measurement

When the thickness of a film is larger than ~1.5 µm (depending on refractive index), SWLI interaction with the layer results in the formation of two fringes, each arising from a surface interface (Figure 5).

The thickness of the film can be determined by locating the positions of the two maxima and applying the refractive index. In addition, the surface information of the two interfaces (air/film and film/substrate) can be obtained from the individual fringes (Figure 6).

© Taylor Hobson 2013
Case studies of DLC (Diamond-Like Carbon) coating

A series of case studies were carried out using DLC (Diamond-Like Carbon) coating on different substrates. Some of the results were also compared to ellipsometry.

Case study 1:
Two samples with DLC films on nitrided steel substrate were measured using CCI HD

Single pixel measurement fringe of DLC film on nitrided steel base
The results for case study 2 clearly show very good correlation between film thickness analysis and ellipsometry.
Conclusions

The film thickness techniques together with Coherence Correlation Interferometry provides us with the ideal metrology tool to make fast and accurate DLC coating thickness and uniformity measurements. It allows characterisation of the coating enabling optimisations of the surface for both R&D and production.

References

3. A. Bankhead et al, Interferometric Surface Profiling, GB2390676, 2004
6 The authors acknowledge CREST of Loughborough University for their ellipsometry measurement results.
Application notes are available for download at www.taylor-hobson.com/learning-zone

First time visitor? sign up here to access all downloads

Please login below

Email Address:
Password:
Sign in
Forgotten your Password?

Some other relevant application notes

A125
Precise measurement of photoresist film thickness

A130
Accurate measurement of optical coating thickness

A131
Advanced metrology for anti-reflection coatings used in photovoltaics devices

Taylor Hobson UK
(Global Headquarters)
PO Box 36, 2 New Star Road
Leicester, LE4 9JD, England
Tel: +44 116 276 3771
taylor-hobson.sales@ametek.com

Taylor Hobson France
Tel: +33 130 68 89 30
taylor-hobson.france@ametek.com

Taylor Hobson Germany
Tel: +49 611 973040
taylor-hobson.germany@ametek.com

Taylor Hobson India
Tel: +91 80 67823200
taylor-hobson.india@ametek.com

Taylor Hobson Italy
Tel: +39 02 946 93401
taylor-hobson.italy@ametek.com

Taylor Hobson Japan
Tel: +81 36809 2406
taylor-hobson.japan@ametek.com

Taylor Hobson Korea
Tel: +82 31 888 5255
taylor-hobson.korea@ametek.com

Taylor Hobson China Beijing Office
Tel: +86 10 8526 2111
taylor-hobson.beijing@ametek.com

Taylor Hobson China Shanghai Office
Tel: +86 21 58685111-110
taylor-hobson.shanghai@ametek.com

Taylor Hobson Singapore
Tel: +65 6484 2388 Ext. 120
taylor-hobson.singapore@ametek.com

Taylor Hobson USA
Tel: +1 630 621 3099
taylor-hobson.usa@ametek.com